Ini. J. Solids Structures Vol. 23, No. 7, pp. 821-840. 1987 0020-7683/87 $3.00+ .00
Printed in Greal Britain. © 1987 Pcrgamon Journals Ltd.

STRAIN- AND STRESS-BASED CONTINUUM
DAMAGE MODELS—I. FORMULATION

J.C.S8mM0 and J. W. Ju
Department of Mechanical Enginccring, Stanford University, Stanford, CA 94305, U.S.A.

(Received 4 April 1986 ; in revised form 8 September 1986)

Abstract—Continuum clastoplastic damage models employing irreversible thermodynamics and
internal state variables are developed within two alternative dual frameworks. In a strain [stress}-
based formulation, damage is characterized through the effective stress [strain] concept together
with the hypothesis of strain [stress) equivalence, and plastic flow is introduced by means of an
additive split of the stress [strain) tensor. In a strain-based formulation we redefine the equivalent
strain, usually defined as the J,-norm of the strain tensor, as the (undamaged) energy norm of the
strain tensor. In a stress-bascd approach we cmploy the complementary encrgy norm of the stress
tensor. These thermodynamically motivated definitions result, for ductile damage, in symmetric
elastic-damage moduli. For brittle damage, a simple strain-based anisotropic characterization of
damage is proposed that can predict crack development parallel to the axis of loading (splitting
mode). The strain- and stress-based frameworks lead to dual but not equivalent formulations,
neither physically nor computationally. A viscous regularization of strain-based, rate-independent
damage models is also developed, with a structure analogous to viscoplasticity of the Perzyna type,
which produces retardation of microcrack growth at higher strain rates. This regularization leads
to well-posed initial value problems. Application is made to the cap model with an isotropic strain-
based damage mechanism. Comparisons with experimental results and numerical simulations are
undertaken in Part II of this work.

1. INTRODUCTION

“Continuous damage mechanics” (CDM) have been introduced and employed extensively
to describe the progressive degradation experienced by the mechanical properties of
materials prior to the initiation of macrocracks. Kachanov[1] was the first to introduce the
effective stress concept to model creep rupture. Later, damage mechanics were developed
to model fatigue[2, 3], creep[4-7], creep—fatigue interaction[8, 9], and ductile plastic dam-
age[10-15]. Recently, the CDM was applied to brittle materials[16, 17] such as concrete[18—
22} and rock[23, 24].

Continuum damage theories are based on the thermodynamics of irreversible pro-
cesses[6, 16, 25-28] and the internal state variable theory. To model isotropic damage
processes it suffices to consider a scalar damage variable{22, 29], whereas tensor valued
damage variables (second or fourth order) are required in order to account for anisotropic
damage[26, 30-33]. Isotropic damage formulations are extensively empioyed in the literature
because of their simplicity, efficiency, and adequacy for many practical applications.

In this paper, the first part of a sequence of two, we develop damage models within
two possible alternative frameworks, either strain or stress based, which are capable of
accommodating non-linear elastic response and general plastic response. Basic features of
strain space formulations are the following. (a) For ductile damage, the equivalent strain
concept, usually defined as the J, invariant of the strain tensor{13, 21, 22, 29], is redefined
here as the (undamaged) energy norm of the strain tensor. For brittle damage, as a natural
extension, we consider the energy norm associated with the positive part of the strain tensor ;
i.e. the projection of the strain tensor associated with positive eigenvalues. (b) Damage is
introduced through the notion of effective stress and the hypothesis of strain equivalence.
(c) Plastic response is formulated in effective stress space through an additive split of the
stress tensor. By formulating plastic response in terms of effective stresses one effectively
obtains a reduction, with increasing damage, in the material constants characterizing plastic
flow.

In a stress space formulation, on the other hand, (a) the notion of equivalent strain is
defined as the complementary energy norm of the stress tensor, (b) damage is characterized
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through the notion of effective strain together with the hypothesis of stress equivalence and
(c) plastic response is characterized by means of an additive split of the strain tensor. For
the ductile damage case it is shown that these definitions lead, for both strain- and stress-
based models, to symmetric elastic-damage tangent moduli. We note that this is not the
case for the usual J, characterization of equivalent strain. An outline of the paper is as
follows. In Section 3 we develop the framework for strain-based damage models with
attention restricted to isotropy. We conclude this section with the development of a rate-
dependent (viscous) damage model that produces retardation of microcracking at higher
strain rates, in agreement with some experimental results. This model is a viscous regu-
larization of rate-independent damage, with a structure analogous to that of viscoplasticity
of the Perzyna type. This model satisfies the positiveness condition of Valanis[34].

In Section 4, we extend the ideas of Section 3 and develop a simple strain-based
anisotropic damage model for initially linear materials. The main idea is to treat the stiffness
moduli as (tensorial) internal state variables. As a result, for brittle materials, failure modes
in uniaxial compression with cracking development parallel to the axis of loading, the so-
called “splitting modes™, can be predicted within the present phenomenological context.
Section 5 is concerned with the development of the alternative stress-based framework for
damage models.

An essential characteristic of the proposed strain- and stress-based damage models is
the remarkable simplicity of their numerical implementation in the context of finite element
or finite difference methods, leading to a methodology ideally suited for large-scale com-
putation. These and related computational issues are considered in detail in Part II of this
work.

Development of suitable strain localization limiters that prevent mesh-sensitiveness
associated with strain-softening is, currently, an active area of research that is not addressed
in this paper. It is felt, however, that the present formulation can be readily modified to
include several recently developed approaches; for instance, non-local damage equations
of evolution, as in Bazant and Belytschko[57] or modified softening parameters as in Refs
[58, 59]. These issues will be addressed in a forthcoming publication.

2. CONTINUUM DAMAGE: ALTERNATIVE FRAMEWORKS

We shall review some basic concepts of continuum damage mechanics needed for sub-
sequent developments of two possible alternative frameworks : strain-space damage models,
based on the notion of effective stress and considered in Sections 3 and 4; and stress-space
damage models based on the effective strain concept and considered in Section 5.

2.1. Effective stress concept and hypothesis of strain equivalence

Physically, degradation of the material properties is the result of the initiation, growth
and coalescence of microcracks or microvoids. Within the context of continuum mechanics,
one may model this process by introducing an internal damage variable which can be a
scalar or a tensorial quantity. We denote by M a fourth-order tensor which characterizes
the state of damage and transforms the homogenized stress tensor ¢ into the effective stress
tensor & (or vice versa) ; explicitly

é:=M"":0. (M

For the isotropic damage case, the mechanical behavior of microcracks or microvoids is
independent of their orientation and depends only on a scalar variable d. Accordingly, M
will simply reduce to (1 —d)I, where L is the rank four identity tensor, and eqn (1) collapses
to

a(t)

o(t) := 1_—(1(1)

@
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Fig. 1. Schematic illustration of the Aypothesis of strain.

where d(1)€[0,d.] for te R, is the damage parameter, a(f) the Cauchy stress tensor, and
G(?) is the effective stress tensor, both at time 1. Here, d.e (0, 1] is a given constant. The
coefficient 1 —d(z) dividing the stress tensor in eqn (2) is a reduction factor associated with
the amount of damage in the material first introduced by Kachanov[l]. The value d =0
corresponds to the undamaged state whereas a value de (0, d.) corresponds to a damaged
state. The value d = d, defines complete local rupture[13, 29]. The damage parameter d may
be interpreted physically as the ratio of damaged surface area over total (nominal) surface
area at a local material point. In addition, Lemaitre[3, 27] introduced the following hypo-
thesis of strain equivalence :

“the strain associated with a damaged state under the applied stress is equivalent to the
strain associated with its undamaged state under the effective stress”.

See Fig. 1 for a schematic explanation.

2.2. Effective strain concept and hypothesis of stress equivalence
As an alternative to the concept of effective stress, we may consider the following

notion of effective strain[33]
&) :=M:e(r) (anisotropic) 3)
&) .= [1 —d(N)e(r) (isotropic). 4)
Here, &(r) is the strain tensor and &(¢) is the effective strain tensor. By analogy with

the hypothesis of strain equivalence and invoking similar homogenization techniques, we
propose the following dual Aypothesis of stress equivalence

“the stress associated with a damaged state under the applied strain is equivalent to the
stress associated with its undamaged state under the effective strain”.

We refer to Fig. 2 for a schematic illustration of this hypothesis.

Physical Space Effective Spoce

Fig. 2. Schematic illustration of the hypothesis of stress equivalence.
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Remark 2.1. The effective stress concept and the hypothesis of strain equivalence
are naturally associated with a strain-based formulation of elastoplastic-damage consti-
tutive equations. Alternatively, the effective strain concept along with the hypothesis of
stress equivalence correspond to a stress-based formulation of the elastoplastic-damage
constitutive equations. Qur thermodynamic framework will clarify further this basic
distinction. [J

3. A STRAIN-BASED ISOTROPIC CONTINUUM DAMAGE MODEL

The crucial idea underlining the strain-based isotropic continuum damage model
presented in this section is the hypothesis that damage in the material is directly linked to
the history of total strains. The notion of effective stress along with the hypothesis of strain
equivalence then follow from the assumed form of free energy. Attention is focused on
isotropic damage. The extension of the ideas presented in this section to the anisotropic
(brittle) damage case is considered in Section 4.

3.1. Thermodynamic basis. Stress split
To introduce both damage and plastic flow processes, we consider a free energy
potential of the following form:

Y(e,0°,q,d) .= (1-d)¥°(e)—¢:6” +E(q, 0°) &)

where de [0, d] is the damage parameter, q a suitable set of internal (plastic) variables, ¢
the strain tensor, and o” the plastic relaxation stress tensor. In addition, (g, 6°) denotes a
plastic potential function and W°() is the initial elastic stored energy function of the
undamaged (virgin) material. We recall that ¢ — ¥%(¢) is a convex functiont in the space S
of symmetric rank-2 tensors. In particular, for the linear case we have W¥°e) = 4¢:C%:¢
where C° denotes the linear elasticity tensor.

Within the present strain space framework we introduce plastic flow by means of an
additive split of the stress tensor into initial and inelastic parts that follows from the assumed
structure of the free energy. Confining our attention to the purely mechanical theory, the
Clausius-Duhem (reduced dissipation) inequality[35] takes the form

—W46:620 (6)

for any admissible process. By taking the time derivative of eqn (5), substituting into eqn
(6), and making use of standard arguments[36, 37] along with the additional assumption that
damage and plastic unloading are elastic processes (in agreement with the characterizations
discussed below), we obtaing

v oy’
= —_—= bt — —gP 7
o=—=( d) Fralad Y
and the dissipative inequalities
Yoe)d>=0 and &, <6—3>'o’"’>0 (8)
z aq 1\ " 7

It follows from eqn (7) that within the present strain space formulation, the stress tensor is
splitinto elastic-damage and plastic relaxation parts. Itis also clear from eqns (7) and (8) that
the present framework is capable of accommodating general (nonlinear) elastic response and
general plastic response.

+This means that ¥%ae, + (1 —«)e,) <a¥e,)+ (1 —a)¥°(e,), where « € {0, 1].
$ The process leading to eqn (7) by exploiting the Clausius-Duhem inequality is often referred to as Coleman’s
method.
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Remark 3.1. The potential 2(q, o®) is linked to plastic dissipation. Its role is such that
inequality (8), is satisfied for arbitrary processes. Note that we have assumed Z independent
of d. From eqn (5) it then follows that

Mg d)
—Yi= - = ). )

Hence, the initial (undamaged) elastic strain energy W°(e) is the thermodynamic force—Y
conjugate to the damage variable d. [J

Remark 3.2. Within the framework outlined above, the physically relevant notion of
plastic strain, €°, is formulated in terms of local unloading as follows. Let ['(g) : = d¥°(¢)/d¢.
By definition, &” is the residual strain after unloading with &* held fixed. Hence, assuming
I invertible, &P satisfies

0=(1-dTe)—06"=e"=T" ‘(-'5). (10)

Note that in the absence of damage, the stress and strain splits are equivalent for I’
linear. [J

3.2. Strain-based characterization of damage. Elastic-damage moduli

We first characterize the progressive degradation of mechanical properties of the
material due to damage by means of a simple isotropic damage mechanism. To this end,
we make use of the notion of equivalent strain €. Motivated by Remark 3.1, we propose to
define 7 as the (undamaged) energy norm of the strain tensor. This definition is at variance
with that employed by Mazars and Lemaitre[13, 22] as the J,-norm of the strain tensor. It
will be shown that the former leads to symmetric elastic-damage moduli whereas the latter
results in lack of symmetry. Accordingly, we set

7:=/Q¥%e). (1)

We then characterize the state of damage in the material by means of a damage criterion
g, r) £ 0, formulated in strain space, with the following functional form:

g(@,r) :=%t-r<0, t(eR,. (12)

Here, the subscript ¢ refers to value at current time teR,, and r, is the damage threshold
at current time 1. If ry denotes the initial damage threshold before any loading is applied,
a property characteristic of the material, we must have that r, > r, Condition (12) then
states that damage in the material is initiated when the energy norm of the strain tensor, 7,
exceeds the initial damage threshold r,. For the isotropic case, we define the evolution of
the damage variable d by the rate equation

d1= 1M -l’dl
= AHGE4) (13a)
F=g

where > 0 is a damage consistency parameter that defines damage loading/unloading
conditions according to the Kuhn-Tucker relations

4120, g@,r) <0, hg(t,r) =0. (13b)

Conditions (13b) are standard for problems involving unilateral constraint. If g(7,,r,) <0,
the damage criterion is not satisfied and by condition (13b); i = 0; hence, the damage
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rule (13a) implies that 4 = 0 and no further damage takes place. If, on the other hand,
g > 0; that is, further damage (“loading™) is taking place, condition (13b); now implies
that g(f,, r) = 0. In this event the value of 4 is determined by the damage consistency
condition ; i.e.

gEnr)y=g{FE,r)=0=4i=1,. (14a)

So that r, is given by the expression
r, = max {ro,ﬁr(rlaé y 15}. (14b)

Remark 3.3. If H(d,, 7,) in condition (13a) is independent of d,, the above formulation
may be rephrased as follows. Let G: R — R, be such that H(f) =: 0G(,)/07,. We shall
assume that G(*) is monoronic. A damage criterion entirely equivalent to conditions (12) is
given by (%, r,) := G(f)—G(r) < 0. The flow rule (13a) and loading/unloading conditions
(13b) then become

04(t,r) o=
a%, s i

uz0, g(t,r) <0, ug(@,r)=0.

dl=ﬂ
(15)

In Section 4 it will be shown that conditions (15) are simply the Kuhn-Tucker optimality
conditions of a principle of maximum damage dissipation. This interpretation is essential
for the variational formulation considered in Part II of this paper. [J

Remark 3.4. It should be noted that for the elastic-damage case r, does not corre-
spond to the peak of the stress—strain curve in the uniaxial test. This is at variance with
Ref. [21]. [T

3.2.1. Elastic-damage tangent moduli. For ductile damage, our characterization of
damage results in symmetric elastic-damage moduli. In the absence of further plastic flow,
¢® = 0. Time differentiation of eqn (7) along with the damage rule (13a) and the damage
consistency condition (14a) then yields

2o
é(e,d) = (1 —d)a—:i;(‘—) 16— H(%, d)te® (16)

where 6°: = 0¥°(8)/d¢ and, for notational simplicity, the subscript ¢ has been omitted. We
shall ref_'er to ¥ as the initial elastic stress. By taking the time derivative of eqn (11) we
obtain 7 = (1/9)6°: . Substitution into eqn (16) then yields ¢ = C(g, d) :é, where C(g, d) are
the elastic-damage tangent moduli given by
R H
C(s,d):=l:(l—d)-——a;2(a—)—vt_-a°®a°:|. an

Note that C(e,d) is a symmetric rank four tensor. One typically assumes that the initial
(undamaged) moduli C° : = 9*¥°(g)/de? are constant.

Remark 3.5. The symmetry of the elastic-damage moduli depends crucially on the form
of 7 in eqn (16) which follows from our definition of equivalent strain £ given by eqn (11).
In fact, the alternative definition 7 := ,/(2J,(¢)) = \/(2:¢), suggested by Lemairte and
Mazars[21, 22], would result in the following non-symmetric elastic-damage tangent moduli
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39%s) H
(¢) ] -

C(E,d)=[(]—d)—‘—a;2——'ttdo®£ (]8)

3.3. Characterization of plustic response. Tangent moduli

In accordance with the notion of effective stress, the characterization of the plastic
response should be formulated in effective stress space in terms of effective stresses ¢ and
6°. Thus, for the classical situation in which the yield function is postulated in stress space,
we replace the homogenized Cauchy stress tensor ¢ by the effective stress tensor 6, so that
the elastic-damage domain is characterized by (4, q) < 0. Here, q are the internal plastic
variables the evolution of which is defined below. With the assumption of an associative

flow rule, rate-independent plastic response is characterized in strain space by the following
constitutive equations

P (‘N’O(e) -

p o
% \ "% 6°, q) (associative flow rule)

0
G=/h (a‘I;e(g) —6", q) (plastic hardening law) (19)

0
f(@‘};s(s) —é", q> <0 (vield condition)

where 6 denotes the plastic relaxation effective stress rate tensor, 1 denotes the plastic
consistency parameter, and h signifies the hardening law. Equations (19) provide a char-
acterization of plasticity in strain space (see Refs [38-41]). Loading/unloading conditions
may be expressed in a compact form by requiring that

a\PO . . 6‘P°
f('?s(i) _,;P’q)go, 120, lf( 63(6) —6",q>=0. 20)

Note that if f < 0 then 1 =0 and the process is elastic-damage. On the other hand, for
loading, £ > 0 and f = 0. In this latter case, { is determined by requiring that f = 0, the
so-called plastic consistency condition. Making usc of the notation & = (0¥°(e)/de) —6"
(see eqn (7)), during loading one has

of .

$:C+E'q=0 (21)

where 0f /06 denotes the partial derivative of £ ((0'¥°(e)/d¢) —6”, q) with respect to the first
argument. From eqn (7) we obtain

. 2P0 N g
G- aaz(”):é—ép=~?f”—):(é—1;§> 22

where use has been made of the flow rule (19),. Thus, / is determined from eqns (21), (22),
and the hardening law (19), as
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o Y

. co ce”

T Y9 ¥ o
06 0 a6 0q

(23)

Substitution of eqn (23) into eqn (22) then yields 6 = C*°: &, where C* are the effective
clastoplastic tangent moduli given by

[62‘{'0(8) _ af] [ah{/"(s) ﬁf]

2¥°(e) oe’ o oe? o

T Ty oYe o i
06 0e* 06 dq

Ce . (24)

Since ¢ = (1 —d)g, time differentiation and use of eqns (13a) and (14) along with the
relation T = ¢° : §/7 then leads to ° = C: ¢&. Here C* are the elastoplastic-damage tangent
moduli given by

C* = (1—d)C"’—§[o"®a°]. (25)

Observe from eqn (25) that C* is a non-symmetric rank one update of the symmetric tensor

(1-d)T>.

Remark 3.6. According to eqn (19) plastic response is characterized in terms of effective
stresses of and . From a physical standpoint, ¢ corresponds to a homogenized stress over
a nominal area, whereas the effective stress & is a measure of the actual stress acting on the
effective area. On this basis, a characterization of plastic flow in terms of effective stresses
&, 6° appears to be more appropriate. In addition, use of effective quantities in the yield
condition has the net result of lowering the yield strength of the material. O

Remark 3.7 (Alternative characterization). Alternatively, one may characterize the
plastic response of the material by postulating a flow rule that involves the damaged moduli
according to the expression

6° = IC(¢e, d): % (6,9,d)  (flow rule)

q = /h(o,q,d) (plastic hardening law) (26)
120, f(6,q,d)<0, i(0,q,d)=0.

Here C(e, d) denotes the elastic-damage moduli defined by eqn (17), and (26), are the
statement of the yield and loading/unloading conditions. During loading use of the plastic
consistency condition f(a, q, d) = 0 leads, after standard arguments, to the following
expression for elastoplastic-damage tangent moduli :

ol T 0.8 g
[C%}@[C'%]Jradf[c'aa]@“

P-— C—
Cc®:=C T, . @7)
de’ "de Oq

Note that C® is generally non-symmetric. However, if one assumes that the plastic yield
condition does not depend on the damage variable, then Jf/0d = dh/dd = 0, the second
term in the numerator of eqn (27) drops out, and one obtains elastoplastic-damage moduli
which are symmetric. It will be shown in Part II of this work that numerical modeling based
on this formulation give satisfactory results. O
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3.4. Extension to rate-dependent (viscous) damage model

Some existing experimental results (see, e.g. Refs [42-45]) suggest that the amount of
microcracking (damage) at a particular strain level exhibits rate sensitivity to the applied
rate of loading in a (high strain rate) dynamic environment. A simple phenomenological
characterization of this effect may be obtained by means of a viscous regularization of the
rate-independent strain-based damage model previously described. Formally, the structure
of this regularization, formulated below, is entirely analogous to the classical viscoplastic
regularization of the Perzyna type[46]. The resulting rate-sensitive damage model (a)
requires only one additional material parameter, i.e. the damage fluidity coefficient (u) ; (b)
as u approaches zero exhibits instantaneous elastic response, whereas as u approaches
infinity reduces to the rate-independent damage characterization ; and (c) predicts decrease
in nonlinearity of the stress—strain curves as the strain rate is increased. In other words,
microcrack growth is retarded at higher strain rates[45]. For alternative rate-sensitive
damage theories see, e.g. Refs [42, 47]. In Ref [47], for instance, rate-sensitivity is constructed
by considering the “microcrack inertia” effect.

Rate equations governing visco-damage behavior are obtained from their rate-inde-
pendent counterpart (13a) by replacing the damage consistency parameter g by ud(g):
Here yu is the damage fluidity coefficient (2 material constant). The scalar function ¢(g)
represents the viscous damage flow function and g is defined in eqn (12). Accordingly, we
have

dl = #(&(g)>H(fn dt)

, (28)

ry= #<§5(9)>
where () denotes the McAuley bracket (ramp function). For simplicity, in what follows
we shall assume /inear viscous damage; i.e. ¢(g) = g. Hence, eqns (28) reduce to

dl = pg(t,r)>H(i, d)

(29)
F,= ﬂ(g(fn r)y = ult, —r).

The inviscid damage characterization and the instantaneous elasticity response can
then be obtained as special cases of the rate-dependent damage formulation. These and the
related algorithmic treatment of visco-damage will be addressed in detail in Part II of this
work.

3.4.1. Positive condition. Recently, the question of uniqueness of solution and well-
posedness of initial-value problems for softening materials has become a somewhat con-
troversial issue. We show that a viscous damage model of the type (29) satisfies the
positiveness condition in Valanis[34]. To this end, by differentiation of the stress—strain
relation o = (1-d)V¥°(e) and using (29) we obtain

¢ = (1-d)V?¥°(e): 6~ dV¥°(e)
= (1-d)V?¥°(e):é~ u{ g(%,, r)> H(E, d)V¥'(@). (30)

At a state defined by {e, d,, r,}, for two different stress rates ¢,, d,, and two different strain
rates £, and &,, it follows from eqn (30) that

(61—02): (81 —é2) = (1—d) (£, — &) : V?¥e) : V2¥e) : (61~ ;) > 0 @31

provided that the undamaged elastic modulus C° : = V2W°(¢) is positive definite. Thus, the
material is positive in the sense of Valanis[34].
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4. A SIMPLE STRAIN-BASED ANISOTROPIC DAMAGE MODEL

In this section we shall extend the strain-based framework developed in Section 3 to
include anisotropic brittle damage. It is shown that for ductile damage the characterization
proposed in this section collapses to the isotropic model developed in Section 3, and
thus providing a canonical extension of ductile (isotropic) damage models to treat brittle
anisotropic damage.

Anisotropic continuum damage may be characterized in terms of vector quantities[16,
17], or by means of second- or fourth-order tensorial quantities[25, 26, 32, 33, 48]. In the
present context, we propose a characterization of damage based on the concept of effective
stress, by providing a simple and effective construction of the fourth-order transformation
tensor M. We recall that this transformation connects ¢ and ¢ through the basic relation
(1). We start by assuming the following form of free energy potential

V:=1:C:e—0a”:e+E(q) (32)
in which C is a fourth-order tensor that physically defines the current damaged stiffness

moduli, and thus includes the effect of microcracking. The Clausius—-Duhem inequality (6)
now yields

é:[6—C:e+0”]—e:Cie+[6P:e—~VE-q] = 0. (33)
Note that C plays itself the role of the internal damage variable. In Ref. [48] the compliance
tensor is also regarded as an internal variable. As in Section 2 we assume that unloading is

an elastic process together with the hypothesis that damage evolution (characterized below)
and plastic evolution are independent processes. This leads to the stress—strain relations

L 4
a=a—=C:t:—¢7p (34)
Ot

along with the following damage and plastic dissipation inequalities
Dé:=—e:Cie=0, DP:=6":6—VE-q=0. (35)
In addition, we note that

oV |
0(e® e) - EC (36)

so that (¢ &® ¢) is the thermodynamic flux conjugate to the (tensor) internal variable C.
Remark 4.1. Let us denote by C° the initial undamaged moduli at time 7 = 0; that is,
C° := (CJ,.,. Within the present framework we can introduce the notion of effective stress
by setting
M:=CC’"!, é6:=M"'ig, 6°:=M"':q". 37

Equation (34) may then be rephrased in terms of effective stresses and undamaged moduli
as

6 =C"¢—3g" (38)
which is the counterpart of eqn (7). Therefore, plastic response can be characterized in-

dependently from damage evolution in terms of effective stress exactly as in Section 3.
The main point of the present development concerns the characterization of damage.
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4.1. Characterization of damage evolution
In order to build into the formulation the notion of irreversibiliry, we introduce a
damage criterion in strain space with the following functional form

ge®er)=0E®e)—r, <0 (39)

where r, is an internal variable that furnishes the “radius” of the dumage surface g(e ® ¢, r))
= 0 at current time. The damage process is then characterized in terms of the following
irreversible, dissipative equations of evolution

Ce .0g(e®e,r,)
- (e ®¢)

(40)
@n=0, ge®e,r) <0, pge®er)=0.

Equations (40) can be regarded as the Kuhn-Tucker conditions of the following “principle
of maximum damage dissipation”: For a given local history of strains the actual damage
moduli C are those moduli that render a maximum of damage dissipation. This principle is
analogous to the principle of maximum plastic dissipation (see e.g. Hill[49]). A proof of
this statement is sketched below.

Remark 4.2. Mathematically, maximum damage dissipation may be formulated as
follows. Introduce the convex cone

E:={ee[LY(Q)°| g(¢®e,r) <O} (41)
Then, the moduli C are characterized as the argument of the following principle

C=argmax {D*:= —¢:C:¢}. (42)

ek

To see this, simply note that eqns (40) are the Kuhn-Tucker optimality conditions (see,
e.g. Strang[50]) of the following Lagrangian functional

L:=D—jig(t®e,r,) (43)

where ji > 0 is a Lagrange multiplier belonging to the positive cone K := {jie L¥Q) |
4 = 0} (the damage rule, eqn (40),, corresponds to requiring that 4LY/0(s ® &) = 0). [

4.2. Ductile and brittle damage models
We show next that for the case of ductile damage the characterization outlined above
reduces to the isotropic damage model described in Section 3. By contrast, for the brittle
damage case, the above formulation together with a positive spectral projection results in
an anisotropic damage model.
4.2.1. Ductile damage : isotropy. Assume that the damage rule is of the form
ge®e,r) = G(F)—r,  whereT:=.,/(e:C":¢). (44)
That is, 7 is the equivalent strain concept introduced in Sectiqn 3. In addition, we define
H := 0G/dt and F, = jiH/2%. Since F, = TH, we have j = 27i. In addition, 97/d(e ® &)
= (1/27)C° and the damage rule (40), thus takes the form
C=-fHC'=C=(1-d)C° (45)

where, by damage consistency
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, 0G(E). H
d= 5z t—fa.C.s. (46)

Therefore, in the event of ductile damage, the above characterization implies that damage
must be isotropic.

4.2.2. Brittle strain-based anisotropic damage. The proposed formulation of damage
outlined above leads to a very simple anisotropic brittle damage model. First, in view of
the significance of tensile extensions in brittle damage processes, we propose the following

definition for the equivalent tensile strain. Consider the spectral decomposition of the strain
tensor[21, 22, 48]

3
&= Z &p: ® piy Ipfl =1 47
i=

where ¢, is the ith principal strain and p; the ith corresponding unit principal direction. Let
Q™ be the positive spectral projection defined as

3
Q*:=Y He)pi®p, lpll =1 (48)
i=1

where H(-) is the Heaviside function. Then, we define the tensile strain tensor ¢* by the
expression

' 1= (Q*)diag[z,,¢2,€,](Q*)" = [Q"Q7][Q* QT (49)

3
where Q:= ) p,® p; and tensile strains are taken to be positive. For convenience we

i=1

introduce the fourth-order projection tensor P* with components
,',+k/ = Q:: Q/; Qku th (50)
so that ¢ can be expressed as
et =Pt g, ie & = Phey. (51)

With this notation at hand, we introduce the notion of equivalent tensile strain T according
to the expression

T:=JE" :C%e*) = /(e:[P*C'P*]:e). (52)
The damage rule then becomes
C = —tHP*CP*

7

i

1 d
et .00, +
T_s :C 7 (&%) (53)

+ +

I
0

4 b

where use has been made of the relationship 277 = 4 in eqn (53),. This completes our
formulation of brittle damage. Note that
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ij-(P+ ) #PYé
dt
owing to the non-linear nature of P*.

Remark 4.3. The actual computation of the projection P* as defined by eqn (50)
involves an eigenvalue calculation to obtain Q* given eqn (48). A further simplification is

obtained by selecting P* as the volumetric tensile strain projection. Accordingly, one could
set

P :=1H(tre)l®1, et =P*:¢ (54)

where tensile strain is taken to be positive. Note for the isotropic case the damage evolution
equation, eqn (53), amounts to degradation of the bulk modulus. 3

4.2.3. Physical motivation. The brittle damage model outlined above is essentially a
strain driven mechanism in the sense that damage in the material is directly linked to the
history of strains and not to the stress history. To illustrate the physical implications of this
basic assumption, consider the idealized situation of a cylinder subject to unconfined
increasing uniaxial compression. Assuming isotropic undamaged elastic response, a strain-
based anisotropic brittle damage model would predict progressive damage and eventual
failure of the specimen due to the presence of tensile radial and hoop strains. Cracking then
develops normal to the plane of tensile strains and thus parallel to the axis of loading; i.e.
the so-called “splitting modes™. This is a typical failure in many rock-like materials such as
concrete. Note that a phenomenological damage model based on tensile stresses could not
possibly predict such a failure mode. [

From a computational standpoint, a strain-based damage criterion is particularly
convenient and, as shown in Part II of this work, leads to a remarkably simple algorithmic
treatment.

5. A STRESS-BASED ISOTROPIC CONTINUUM DAMAGE MODEL

In this section we develop a stress-based characterization of elastic—plastic damage
response which is dual to the strain-based formulation considered in Section 3. Here,
we start from an assumed form of the complementary energy function and obtain, by
systematically exploiting the Clausius~-Duhem inequality, the notion of effective strain, the
additive split of the strain tensor into elastic and plastic parts, and the hypothesis of stress
equivalence as formulated in Section 2.2. Although stress- and strain-based characterization
of damage may be regarded as dual points of view, they are not equivalent neither physically
nor computationally. We finally recall that fracture criteria used in fracture mechanics are
typically stress based.

5.1. Thermodynamic basis. Strain split

We start our formulation by considering a complimentary free energy potential of the
following form

A(o,2%,q,d,) := d,A%(0)+06:6"—E(g, £°) (55)
where d, := 1/(1—~d), ¢ is the plastic strain tensor, and A’(o) is the initial elastic com-
plimentary stored energy function of the virgin material. For an isothermal case, the

Clausius-Duhem inequality (7) expressed in terms of the complementary free energy takes
the form

A—6:e20 (56)

for any admissible process. Time differentiation of eqn (55), substitution of the result into
inequality (56), and use of standard arguments together with the additional assumption that
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plastic and damage unloading are elastic processes (in agreement with the characterizations
discussed below), yields

A oA°
_—= — P |
6= d, o +¢ (57
along with the dissipative inequalities
A%0)d, >0  and —5—E—-q—<E ——a)'é">0 (58)
i 0q oe? R

One observes that decomposition, eqn (57), for the strain tensor is the counterpart of eqn
(7) for the stress tensor. Moreover, from eqns (55) and (58), it also follows that

Y= - —222"2 = A%o). (59)

Hence, the initial elastic complimentary energy A%(s) is the thermodynamic force —Y
conjugate to the damage variable d,. This observation motivates the characterization of
damage in Section 5.2,

Remark 5.1. We assume that the complementary energy function A%(e) is such that

0N (0)
ad =0

A°0)=0, and =0. (60)

Note that for the linear case A°:= 1/26: C*': o, where C° are the undamaged elastic
moduli. It follows from eqns (57) and (60) that the plastic strain £ is precisely the residual
strain obtained upon (local) unloading. Thus, identifying the elastic strain with recoverable
strain after unloading, i.e. & := ¢—¢®, from eqn (57) we have

0 0

oA
= :=(1—-d)s =25 (61)

oA
¢ da

™

sinced, = 1/(1—-d). O

5.2. Stress-based characterization of damage. Elastic-damage moduli

By analogy with the treatment in Section 3.2, we characterize evolution of damage in
the material by means of a damage criterion and a damage rule. First, motivated by the
conjugacy relation (59) we define the equivalent strain as the (undamaged) complimentary
energy norm of the stress tensor

1:=,/(2A%(0)). (62)

Next, we postulate a damage criterion g(7,, r) < 0, formulated in stress space, with the
following functional form

gE,r):=7t—r<0. (63)

Condition (63) states that damage in the material is initiated when the complimentary energy
norm of the stress tensor, 7, exceeds the initial damage threshold r,. For the isotropic case,

we define the evolution of the damage variable d, and the damage threshold r, according
to the rate equations
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d, = pH(d,, )

! (642)
r=u
together with the damage loading/unioading conditions
u=z0, g(En<0, jgE,rn=0. (64b)
The value of 4 is determined by the damage consistency condition ; i.e.
gE N =g@EN=0=>p=1%. (65)

This leads to the explicit expression : r = max {r,, max ]TJ}.
s€(— 00,1,

5.2.1. Elastic-damage tangent moduli. Consider the situation in which no further
plastic flow takes place so that €* = 0. Time differentiation of eqn (57) then yields

N BN

8.=d.,*é;'+d,—a72—.d’. (66)

Again we recall that d,:= 1/(1 —d). Assuming that the material is undergoing further

damage, the Kuhn-Tucker conditions (64b) yield g > 0 and g(, r) = 0. By enforcing the

damage consistency condition ¢(%, r) = 0 we obtain g = 1 = (1/) (0A°/d6): d. Therefore,
é§ = C '(a, d,): 6, where C(a, d,) are the elastic-damage tangent moduli given by

0*A%@@) H A" _OA° ]!

C(d’, da) = [daT ? —67 E . (67)

Note that C(s, d,) is a symmetric rank four tensor.

5.3. Characterization of plastic response. Tangent moduli
Within the present stress-based framework, we characterize general plastic response in
the stress space by means of the classical constitutive equations

&= }:gg(a, qQ) (associative flow rule)

q = Ah(e,q) (plastic hardening law) (68)
fle,9) <0 (yield condition).

In addition, loading/unloading conditions may be conveniently formulated in Kuhn-Tucker
form as

fle,9) <0, 120, if(e,q)=0. (69)

Finally, elastoplastic-damage tangent moduli are obtained under the conditions A>0and
g > 0, by enforcing both the plastic and damage consistency conditions f=0and g=0
during loading. Since &” # 0, an argument similar to that leading to eqn (66) now yields

&=c:(s'—/1'a—f) (70)
do
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where C is the clmtic -damage modulus defined by eqn (67), and use has been made of
flow rule (68),. 4 is determined from the consistency condition f(a, q) = 0 as

U
. ds
| = . 71
i _z_a_f.,, o
oo do  Oq

We then obtain the following expression for the elastoplastic-damage tangent moduli

elele]

C?:=C- "fc 7 7. (72)
2 aq "

If plastic loading is taking place but the material is not undergoing further damage; i.e.
A > 0, f=0but g =0, we arrive at expressions for £ and C® identical to eqns (70) and

(71) with C now given by
aZAO -1
e-[e2¥]

Note that C*® is a symmetric rank four tensor. The reason for this symmetry lies in the
formulation of the plastic flow rule for the plastic strain &°, not for the effective plastic
strain £°.

Remark 5.2. Note that according to eqn (72) the elastoplastic-damage moduli have a
compelling physical interpretation : their structure is identical to the classical elastoplastic
moduli, with the elastic moduli of the undamaged material replaced by the elastic-damage
moduli associated with the damaged material. [

Remark 5.3. One can extend the above stress-based damage model to account for brittle
behavior. The formulation proceeds along the lines developed in Section 4. []

6. APPLICATION: A CAP-DAMAGE MODEL FOR CONCRETE

Concrete is known to behave as a brittle material that contains numerous microcracks
and microvoids. From experimental observations, damage in concrete is a continuous
process that initiates at very low levels of the applied loading[51, 52], with increasing amount
of damage for increasing levels of strain. The amount of damage that takes place at very
low strain or stress levels may be considered insignificant[51]. Essentially, significant damage
appears only beyond a certain strain threshold[20-22]. In addition, the so-called mode
behavior (tensile cracking) is observed to be the dominant phenomenological aspect in the
concrete damage process[21].

In this section, a cap plasticity model with an isotropic strain-based damage mechanism
is developed to capture basic features of the behavior of concrete, by specialization of
our formulation. To this end, the inviscid, two-invariant associative cap model originally
proposed by DiMaggio and Sandler{53-55] is taken as a point of departure. We conclude
this section with a viscoplastic extension for the proposed cap-damage model to account
for rate effects. It is noted that we adopt the effective stress concept and the strain-based
damage model in Section 3 in the following developments.
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T 0 L0 X{x)

Fig. 3. The yield surface of the two-invariant cap model in effective pressure/J,-deviator space. F,
and F, denote the failure envelope and the hardening cap surface, respectively. The shaded area is
the “singular corner region”.

6.1. Summary of the model
It is assumed that the model exhibits isotropic response of the form

o= (1-d)[K(tre)1+2ue]—a® (73)
where e:= g—1/3 (ir &) 1 is the strain deviator. The basic characteristic of the cap model
is the form of the yield function f(&, k) which is specified in terms of two functions F, and
F.. The function F, denotes the so-called failure envelope surface whereas the function F, is
referred to as the hardening cap. Functional forms for F, and F, are (see Fig. 3)

Jo—F(J) <0 (failure envelope)

f(&x):= {J’z—r‘c(il,z.(x» <0 (capsurface) 7

where J, := tré,J,:=15:§, and

F(J):=[F.U); F(J): = [a—yexp(—pJ))+OJ)]

if >0
L(x): = <x) = {'5 ;f z ZO (74b)
7o 2
P L0):= Py - T

Here (-) is referred to as the McAuley bracket. According to Remark 3.2, the plastic
volume change ¢! : = tre® is obtained from eqns (10) and (73) as

trao?
&l

T 30-dK

In the cap model the hardening parameter x is related to the plastic volume change &} by
the hardening law

e(X):= W{l—exp[-DX(®)]} = h(x) (75)
X(x):= k+ RF (k) (76)

In the above expressions, a, f, 7, ©, R, D and W are material parameters. To account for
damage effects, we assume that H(, d) in the equation of evolution, eqn (13a), for dis
independent of d. Then, according to Remark 3.3, we introduce a damage accumulation
function G(f), defined by eqns (15), with the following functional form proposed in Refs
[21, 22] for concrete material

SAS 23:7-
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G(7):= l—f()(;r_—}—!—) — Aexp [B(T,—1)] 77

where 4 and B are characteristic material parameters and 7, denotes the characteristic
equivalent strain corresponding to the initial damage threshold ry. As shown in Part II
of this paper, these parameters can be estimated in a systematic manner from suitable
experimental data.

Remark 6.1. The cap model outlined above corresponds to the commonly accepted
interpretation of the original DiMaggio-Sandler model. There are, however, alternative
formulations. For a discussion of all possible alternative formulations along with a complete
analysis, we refer to Simo et al.[60]. O

6.2. Viscoplastic (rate-dependent) extension

Within the framework of a viscoplastic formulation of the type proposed by
Perzyna[46], the rate effect can be readily accommodated in the inviscid cap-damage model
developed above. Following Ref. [56], we assume loading surfaces with identical functional
form as the yield surfaces in the inviscid case. We postulate an associative viscoplastic flow
rule and a hardening law of the following form

a 0,
é = —<¢(f)> 4 (N © ﬂq)

(78)

owe
i= —<¢(f)>h< «© &P,q)

where 7 is the relaxation time (viscosity coefficient). In addition, ¢(f) denotes the viscous
flow, a dimensionless scalar function, and f is the viscoplastic loading function. It is clear
that the constitutive relations governing viscoplastic behavior are obtained from their
inviscid counterpart, eqns (19), simply by replacing 4 by (¢(f)>/z. Two commonly assumed
forms of the viscoplastic flow function for a two-invariant isotropic constitutive model are

Ay A
#() = (lﬁl) or d»(f)—exp(m)—l 19)

where N € R, and F signifies F, or F, (scc eqns (74a) and (74b)).

In Part II of this paper it is shown that despite the simplicity of the cap-damage model
outlined above, good agreement is obtained with well-documented experimental data for
concrete. In particular, softening behavior is well captured. The numerical implementation
of the model is also discussed in detail in Part II of this paper.

7. CLOSURE

We close this paper by noting that for brittle damage, the proposed strain-based
anisotropic characterization of damage in terms of the strain history is capable of predicting
failure mode in which cracking develops parallel to the axis of loading; i.e. splitting modes.
In addition, the proposed strain-based equivalent strain concept defined as the initial strain
energy norm of the undamaged material results, for the ductile damage case, in symmetric
elastic-damage moduli.

General plastic response is introduced either by means of an additive split of the stress
tensor into elastic-damage and plastic relaxation parts in a strain-based model, or by means
of an additive split of the strain tensor into elastic and plastic parts in a stress-based model.
These decompositions result from the assumed forms of free energy potential. To illustrate
the basic formulation, we have developed a simple model for concrete by incorporating an
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isotropic damage mechanism into the two-invariant cap plasticity model. Rate-dependent
effects are accommodated in this model by means of a viscoplastic regularization of the
Perzyna type.

A basic purpose of the present work is to demonstrate that the proposed classes
of elastoplatic-damage constitutive equations are particularly well suited for large-scale
computation. In Part II of this paper an efficient class of unconditionally stable integration
algorithms is developed, based on the notion of operator splitting. Numerical simulations
that illustrate the formulation developed herein are presented and discussed in detail in Part
IT of this work.
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